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Abstract

A method for generating inflow conditions for direct numerical simulations (DNS) of spatially-developing turbulent

boundary layers is presented. The method is a modification of that of Lund et al. [J. Comput. Phys. 140 (1998) 233]. The

approach of Lund et al. is based on having an auxiliary simulation (Code-A) in a three-dimensional domain similar to

that of the main simulation (Code-B). The instantaneous velocity field on a selected plane in Code-A is used as the

instantaneous inflow conditions for Code-B. The inflow conditions for Code-A are generated through a sequence of

operations in which the velocity field at a downstream station is rescaled and re-introduced at the inlet plane. Our

present method modifies the operations in Code-A by introducing a set of additional steps preceding the rescaling

process. This set involves imposing at the inlet plane an appropriate spectrum EðkÞ for the turbulence kinetic energy

(TKE) and a condition for insuring that the statistical correlation hu01u03i between the streamwise and vertical velocity

fluctuations retain a non-vanishing magnitude. This modification is essential for sustaining the production rate of TKE

near the wall throughout the domain. Our DNS results obtained with the new modification are in excellent agreement

with the experimental data of DeGraaff and Eaton [J. Fluid Mech. 422 (2000) 319] for Reh ¼ 1430.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Direct numerical simulation (DNS) of a spatially-developing turbulent boundary layer (SDTBL) re-

quires the solution of the three-dimensional, unsteady Navier–Stokes (NS) and continuity equations with
their prescribed initial conditions and the conditions on the six boundaries of the computational domain.

The most challenging boundary condition is that at the inlet plane. The reason is that in order to obtain

accurate DNS results, the prescribed inflow values of the three time-dependent velocity components should

satisfy the NS and continuity equations, i.e. they must be obtained a priori from an auxiliary DNS of the
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same flow. This auxiliary simulation should be synchronized with the main simulation, such that at each

time-step, the nodal (grid) values of the three velocity components on a plane at a fixed streamwise location

in the auxiliary domain are copied to the corresponding nodes of the inlet plane of the main simulation.
Lund, Wu and Squires [9], hereinafter referred to as LWS, reviewed the existing methods for generating the

inflow conditions for SDTBL starting from the pioneering work of Spalart [13,14] and thus the reader is

referred to that review. Spalart�s method [13,14] eliminated the need for an auxiliary simulation by im-

posing streamwise periodic boundary conditions while accounting for the spatial growth of the SDTBL by

adding source- or growth-terms to the NS equations. One advantage of the periodic boundary conditions is

that they allow the Fourier discretization of the NS equations and hence improved accuracy. However, the

additional growth-terms increased the complexity of the NS equations and required certain approximations

to allow their evaluation.
LWS [9] proposed a modification to Spalart�s method by eliminating the need for the growth-terms in

NS equations and the periodicity in the streamwise direction, via a novel rescaling technique which ac-

counts for the growth of the SDTBL. LWS�s method requires an auxiliary simulation, hereinafter denoted

as Code-A, in which the velocity field on a plane, referred to as recycling plane, near the domain exit is

rescaled and introduced at the inlet plane as boundary condition (Fig. 1). The rescaling applies to the

streamwise and vertical components of the mean velocity, and the three components of velocity fluctuation.

The rescaling process is repeated until a satisfactory solution is obtained. Integration of the governing

equations and rescaling proceed in time while storing, at each time step, the velocity components on a
vertical plane in the middle of the domain of Code-A (Fig. 1) to be used later as inflow boundary conditions

for the main simulation, hereinafter denoted as Code-B.

Although the LWS method [9] is a powerful technique that is much easier to implement than that of

Spalart [13] we were not able to obtain a satisfactory development of the turbulent velocity correlations

hu0iu0ji in Code-A when we used it in our DNS of SDTBL over a flat plate. However, it is clear from the

paper of Lund et al. [9] that the LWS method works quite well in LES. Thus, the objective of the present

paper is two fold:

(1) to introduce a different strategy for obtaining a satisfactory inlet turbulent velocity field for use with the
LWS method; and
Fig. 1. A schematic of the computational domains of the auxiliary simulation (Code-A) and the main simulation (Code-B) used by

Lund et al. [9] and in the present study for the generation of the inflow boundary conditions for SDTBL.
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(2) to provide a detailed description of a procedure for generating the inflow conditions for Code-B which

would be helpful to researchers using DNS of SDTBL.

The paper is organized as follows: Section 2 provides a mathematical description of our DNS of SDTBL

including a detailed procedure for generating the inflow boundary conditions. Section 3 provides a com-
parison of our DNS results of SDTBL with the available experimental data. Closing remarks are presented

in Section 4.
2. Direct simulation of a spatially-developing turbulent boundary layer

2.1. Governing equations

The governing equations for an incompressible turbulent boundary layer flow are the three-dimensional

unsteady Navier–Stokes equations, which are given here in dimensionless form:

DUj

Dt
¼ � op

oxj
þ m

o2Uj

oxk oxk
; ð1Þ

and the continuity equation,

oUj

oxj
¼ 0; ð2Þ

where xj are the streamwise x-, spanwise y- and wall-normal z-direction respectively for j ¼ 1; 2; 3. The
dimensionless kinematic viscosity is m ¼ 1=Red where Red ¼ ~U1~d0=~m is the Reynolds number based on the

dimensional free-stream velocity ~U1, the dimensional boundary layer thickness ~d0 at the inlet plane (x ¼ 0)
of the main computational domain (Code-B in Fig. 1), and the dimensional kinematic viscosity ~m. All

variables in (1) and (2) are non-dimensionalized by ~U1 and ~d0. It is advantageous for the numerical dis-

cretization of Eqs. (1) and (2) to split the instantaneous streamwise velocity component U1ðx; y; z; tÞ into a

prescribed reference velocity profile UrefðzÞ, which approximates the mean streamwise velocity hU1iðx; zÞ,
and the deviation, u1, of the instantaneous velocity in the x-direction from that reference velocity:

U1ðx; y; z; tÞ ¼ UrefðzÞ þ u1ðx; y; z; tÞ: ð3Þ

Note that h� � �i represents, throughout the paper, spatial averaging in the spanwise (y or x2) direction in

addition to time averaging of the enclosed quantity. Applying the velocity splitting (3) to (1) and (2), and
denoting the instantaneous fluid velocities in the spanwise and wall-normal directions as u2 and u3 re-

spectively, the momentum equations can be rewritten [3] as

ouj
ot

þ oðujukÞ
oxk

þ Uref

ouj
ox1

þ u3dj1
dUref

dx3
¼ � op

oxj
þ m

o2uj
oxk oxk

�
þ dj1

d2Uref

dx23

�
ð4Þ

and the continuity equation:

ouj
oxj

¼ 0; ð5Þ

where dj1 is the Kronecker symbol.

Throughout the paper, dimensionless quantities in wall-units carry the superscript �þ�, i.e. Uþ
ref ¼ Uref=us

and zþ ¼ zus=m where us ¼
ffiffiffiffiffiffiffiffiffiffi
sw=q

p
is the friction velocity, sw is the wall shear stress, and q is the fluid
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density. The reference velocity in wall coordinates, Uþ
ref , is prescribed according to the �law of the wall�

[1,10,15] as discussed in detail in the Appendix A.

2.2. Boundary conditions

The following conditions apply to both Code-A and Code-B (Fig. 1). Periodic boundary conditions were

imposed in the spanwise y-direction for the velocity components and pressure. The no-slip boundary

condition for the velocity components and Neumann condition for the pressure were imposed at the wall

boundary,

u1 ¼ u2 ¼ u3 ¼ 0;
op
oz

¼ 0 at z ¼ 0: ð6Þ

The Neumann (stress-free) condition for the velocity components and Dirichlet condition for the

pressure were imposed at the free-stream boundary,

u1 ¼ 0;
ou2
oz

¼ ou3
oz

¼ 0; p ¼ 0 at z ¼ Lz: ð7Þ

At the outflow plane (x ¼ Lx) the following convective condition [8] was imposed for the velocity

components,

ouj
ot

þ Uc

ouj
ox

¼ 0; ð8Þ

where Uc is the mean convective velocity at the exit plane. A zero-pressure gradient in the streamwise

direction (op=ox ¼ 0) was imposed at both the inflow and outflow planes.

The prescription of the initial conditions throughout the domains and the turbulent flow conditions at

the inlet plane of Code-A and Code-B are described in the following subsections.

2.3. Method for generating the inflow conditions for the auxiliary simulation: Code-A

Our method for generating the inflow conditions for Code-A comprises two main Tasks:

Task-1 requires the prescription of the spectrum, EðkÞ, of the turbulence kinetic energy (TKE) and the

vertical, z or x3, profiles of the four velocity correlations: hu021 i, hu022 i, hu023 i, and hu01u03i at the inlet plane,

x ¼ 0. It should be emphasized here that u0i is the deviation of the instantaneous velocity from hUiiðx; zÞ, i.e.

u0iðx; y; z; tÞ ¼ Uiðx; y; z; tÞ � hUiiðx; zÞ: ð9Þ

The prescribed values of EðkÞ and hu0iu0ji are then used in conjunction with the method of Le and Moin [6]

to obtain the velocity field uiðx ¼ 0; y; zÞ at time t ¼ 0. The objective of Task-1 is to create a realistic dis-

tribution of the velocity field throughout the computational domain (Code-A) which is then used as an

initial condition for Task-2.

Task-2 employs LWS�s rescaling method to adjust the profiles of hUii and hu0iu0ji so that they match the

growth rate of the SDTBL with the prescribed value of the momentum thickness Reynolds number, Reh, or
the boundary layer thickness Reynolds number, Red, at the inlet plane.

Task-1 is the main difference between our method and that of LWS [9]. More specifically, LWS rec-

ommended, instead of our Task-1, the prescription of only the mean velocity, U1ðzÞ, and a superposed

random fluctuation, u0i, with a maximum amplitude of 10% of U1. Implementing that recommendation in

our Code-A resulted in a fast temporal decay of hu0iu0ji throughout the domain and the consequent lami-

narization of the SDTBL. Our preliminary results indicated that the reason for that temporal decay was
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that the rescaling of LWS was not able to sustain the required magnitude of the cross correlation hu01u03i
necessary for the production of TKE when starting with the initial condition hu01u03i ¼ 0. We then attempted

to rectify that problem by prescribing realistic profiles for the four correlations hu021 i, hu022 i, hu023 i, and hu01u03i
(see Appendix A in LWS [9]). However, the fast temporal decay of TKE persisted. Finally, we concluded

that it was necessary to prescribe a realistic TKE spectrum EðkÞ in addition to hu0iu0ji profiles at the inlet

plane of Code-A in order to sustain the production rate of TKE. The combination of a realistic EðkÞ and a

non-vanishing hu01u03i in our method insures that the velocity-derivative skewness defined as

Su ¼
1

3

X3

i¼1

hðou0i=oxiÞ
3i

" #
1

3

X3

i¼1

hðou0i=oxiÞ
2i

" #�3
2

ð10Þ

maintains a value of about �0:5 as shown in Fig. 2 where the instantaneous Su was obtained by spatial

averaging over the whole length and width of the domain and a height of 06 z6 0:6d0. In contrast, the

figure shows that the method of LWS produces a vanishing Su as time increases. This skewness is related to

the processes of vortex stretching and nonlinear energy transfer from small wavenumbers to large wave-

numbers. Further evidence of the realism of the velocity field produced by our method is shown in Fig. 3(a)
and (b) which displays the contours of the instantaneous correlation u01u

0
3 (white lines) superposed on the

contours of the instantaneous vorticity component in the streamwise direction xx (color contour) on a

vertical ðyzÞ plane (near the exit) at x ¼ 8:25d0 and t ¼ 100. Fig. 3(a) shows the zones of large magnitude of

u01u
0
3 located between the counter-rotating longitudinal vortical structures. In contrast, Fig. 3(b) shows that

the LWS method results in a vorticity of about three orders of magnitude less than that in our method, and

the nearly vanishing u01u
0
3 is uniformly distributed in horizontal layers. Fig. 4 compares the realistic zþ

profiles of the velocity correlations hu0iu0ji at x ¼ 8:25d0 produced by our method in Code-A/Task-1 (lines)

and those vanishingly small profiles of LWS (symbols).
We now describe in detail Tasks 1 and 2 of our method.
t
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Fig. 2. Time development of the velocity-derivative skewness �Su, Code-A/Task 1 (solid line); LWS rescaling (dotted line).



Fig. 3. Contours of the instantaneous correlation u01u
0
3 (white lines) superposed on the contours of the instantaneous vorticity com-

ponent in the streamwise direction xx (color contour) on a vertical ðyzÞ plane at x ¼ 8:25d0 and t ¼ 100. (a) Code-A/Task-1,

u01u
0
3 ¼ �0:01; (b) LWS rescaling, u01u

0
3 ¼ 2� 10�6.
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Fig. 4. zþ profiles of the velocity correlations hu0iu0ji at x ¼ 8:25d0. Code-A/Task-1 (lines); LWS rescaling (symbols).

A. Ferrante, S.E. Elghobashi / Journal of Computational Physics 198 (2004) 372–387 377
2.3.1. Task-1

We use the method of Le and Moin [6] for generating the inflow velocity fluctuations u01ðy; z; tÞ, u02ðy; z; tÞ
and u03ðy; z; tÞ. The method of Le and Moin [6] is based on the approach of Lee et al. [7] but modified for
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wall-bounded flows. Both methods require the prescription of the TKE spectrum, EðkÞ, at the inlet plane.

Our EðkÞ is different from that of Lee et al. [7].

The objective of Task-1 is to create initial conditions for Task-2 such that the LWS method produces the
correct turbulent velocity field.

We list here the steps for implementing this method in detail for completeness.

(1) Prescribe a spectrum EðkÞ of the TKE, e.g. for isotropic turbulence,

EðkÞ ¼ k
2pk2p

exp

�
� k
kp

�
k ¼ 1; . . . ; kmax; ð11Þ

where k is the wave number and kp is the wave number of peak energy, and all the wave numbers are

normalized by the lowest nonzero wave number, ~kmin. The streamwise wave number kx is now converted

into frequency x, and thus the wave numbers k and ~kmin can be written as

k ¼ 1

~kmin

2px
TU1

� �2
"

þ 2pky
Ly

� �2

þ 2pkz
Lz

� �2
#1

2

ð12Þ

and

~kmin ¼ Min
2p
TU1

;
2p
Ly

;
2p
Lz

� �
; ð13Þ

where the time T ¼ DtNt, and Ly and Lz are the spanwise and vertical lengths of the computational domain

(Code-A) given in Table 1. The ranges for x, ky and kz are x ¼ �Nt=2þ 1; . . . ;Nt=2;
ky ¼ �Ny=2þ 1; . . . ;Ny=2; and kz ¼ �Nz=2þ 1; . . . ;Nz=2, where Nt, Ny and Nz are given in Table 1. Thus the
highest resolved wavenumber, kmax, is

kmax ¼ INT
1

~kmin

Min
2p
TU1

Nt

2
;
2p
Ly

Ny

2
;
2p
Lz

Nz

2

� �� �
; ð14Þ

where INT � � �f g indicates the integer part of � � �f g. The values of the parameters needed for Task-1 are

listed in Table 1.
(2) Compute ÊðkÞ, the kinetic energy at a given wavenumber vector, k, from the prescribed spectrum

EðkÞ as follows.
The TKE spectrum EðkÞ is defined as

EðkÞ ¼
X

k6 jkj<kþ1

ÊðkÞ; ð15Þ

where

ÊðkÞ ¼ hû�i ðkÞûiðkÞi=2; ð16Þ

and ûiðk; tÞ is the Fourier coefficient of u0iðy; z; tÞ, and û�i ðk; tÞ is its complex conjugate. Thus ÊðkÞ can be

computed from the prescribed EðkÞ as
Table 1

Task-1 parameters

kp T Ly Lz Nt Ny Nz Tr DUmax

4 96Dt 5d0 3:6d0 96 256 96 24Dt p=10
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ÊðkÞ ¼ EðkÞ=ZðkÞ; ð17Þ

where ZðkÞ is the number of Fourier modes at wave number k,

ZðkÞ ¼
X

k6 jkj<kþ1

1: ð18Þ

(3) Compute the instantaneous ûiðk; tÞ at every time step from

ûiðk; tÞ ¼ ½ÊðkÞ�1=2 exp½iUiðk; tÞ�; ð19Þ

where Ui is a random phase angle and i ¼
ffiffiffiffiffiffiffi
�1

p
. Ui is a function of k and t, and is initialized at t ¼ 0 as a

random number for each k. For t > 0, Ui is changed for each k only once in a given time interval Tr at a
random instance by a random amount DUi. Furthermore, jDUij is bounded by a prescribed value DUmax.

Table 1 provides the values of these parameters used in our simulation.

Fig. 5 compares the prescribed three-dimensional spectrum (11) and the spectrum generated from the
Fourier coefficients via the sequence of Eqs. (19), (16) and (15). The displayed excellent agreement verifies

the accuracy of our procedure for generating the Fourier coefficients for the non-cubic domain (see Eq. (12)

and Table 1).

(4) Prescribe reasonable z-profiles for the four velocity correlations, hu021 i, hu0
2

2 i, hu0
2

3 i and hu01u03i, e.g. from
[13], which will be used below as reference profiles against which to check the velocity fluctuations u0i
computed via (19) to insure that they have the appropriate value of the correlation hu01u03i.

(5) In order to insure that hu01u03i does not vanish, we need to rotate the flow coordinates ½x; z� by an angle

hp so that they coincide with the principal coordinates ½~x;~z� where the corresponding velocities ~u01 and ~u03 are
uncorrelated, i.e. h~u01~u03i ¼ 0. Compute the angle of rotation hp (see [6] for the derivation),

hpðzÞ ¼
1

2
tan�1 2hu01u03i

hu023 i � hu021 i

� �
: ð20Þ
k
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Fig. 5. Turbulence kinetic energy spectrum EðkÞ. Code-A/Task 1, step 3 (solid line); Prescribed, Eq. (11) (symbols).
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Compute hð~u01Þ
2i and hð~u03Þ

2i in the principal coordinates as

hð~u01Þ
2i ¼ hu021 i cos2 hp � hu023 i sin

2 hp
cos2 hp � sin2 hp

;

hð~u03Þ
2i ¼ hu023 i cos2 hp � hu021 i sin

2 hp
cos2 hp � sin2 hp

:

ð21Þ

Note that since no rotation is required for u02, the profile of hð~u02Þ
2i is identical to the prescribed hu022 i.

(6) Compute, at every time step, the inverse Fourier transform (complex to complex) of ûiðky ; kz;xÞ in the

kz direction to obtain ûiðky ; z;xÞ. Then evaluate the mean-square velocity correlation as

u02i ðzÞ ¼
XNy=2

ky¼�Ny=2þ1

XNt=2

x¼�Nt=2þ1

ûiðky ; z;xÞû�i ðky ; z;xÞ; ð22Þ

to compute the ratio riðzÞ of the mean squares as

riðzÞ ¼
hð~u0iÞ

2iðzÞ
u02i ðzÞ

: ð23Þ

(7) Compute, at every time step, the inverse Fourier transform (complex to real) of ûiðky ; z;xÞ in the ky
direction and sum the result over all frequencies x to obtain ~u0iðy; z; tÞ. Then multiply ~u0iðy; z; tÞ by

ffiffiffiffiffiffiffiffiffi
riðzÞ

p
so

that the mean-square of the product matches hð~u0iÞ
2iðzÞ obtained from (21).

(8) Rotate ~u01 and ~u03 back to u01 and u03 in the flow coordinates ½x; z� using

u01 ¼ ~u01 cos hp þ ~u03 sin hp;

u03 ¼ �~u01 sin hp þ ~u03 cos hp;
ð24Þ

to match the prescribed hu01u03i in step 4 above.
k2
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Fig. 6. One-dimensional energy spectrum E11ðk2Þ computed at x ¼ 0 and zþ ¼ 100. Code-A/Task 1 (solid line); LWS rescaling (dotted

line).
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Steps 1, 2, 4 and 5 are performed only once, whereas steps 3, 6, 7, and 8 are performed at each time step

to generate the inflow (boundary) conditions, u0iðy; z; tÞ, of Code-A in Task-1.

The initial conditions for Task-1 were generated by copying the values of the inlet plane velocity fluc-
tuations u0iðx ¼ 0; y; zÞ at t ¼ 0 to all other y–z planes of the computational domain (Code-A), plus a

random fluctuation of maximum amplitude equal to 10% of u0iðx ¼ 0; y; zÞ. In order to insure that this initial

velocity field satisfies the continuity equation (2) we solve the Poisson equation for the pressure:

op
oxi oxi

¼ 1

Dt

ou0j
oxj

; ð25Þ

to obtain the velocity correction [12]: Du0j ¼ �Dtðop=oxjÞ.
The numerical method for solving Eq. (25) as well as Eqs. (1) and (2) is described below in Section 2.5.2.

The solution is advanced in time up to t ¼ 100 ’ 1730m=u2s when the flow field shows the characteristics of a
SDTBL (see Figs. 2–4). The three-dimensional velocity field uiðx; y; zÞ at t ¼ 100 is then stored for use as

initial condition for Task-2.

It is important to show here the difference between the energy spectra generated in our Task-1 with that

obtained from the method of Lund et al. [9] where the initial conditions were prescribed via only the mean

velocity, U1ðzÞ, and a superposed random fluctuation, u0i, with a maximum amplitude of 10% of U1. Fig. 6

compares our time-averaged one-dimensional energy spectrum E11ðk2Þ in the y-direction at the inlet plane

ðx ¼ 0Þ at zþ ¼ 100 of Code-A/Task-1 with that obtained using LWS rescaling. It is clear that the latter, as

expected, has a nearly uniform distribution of negligible energy over all wavenumbers, whereas our
spectrum is realistic. Similar comparison was observed throughout the domain.
2.3.2. Task-2

Task-2 performs the following steps:

(1) Use the velocity field uiðx; y; zÞ stored in Task-1 at t ¼ 100 as initial condition (t ¼ 0) for Task-2

simulation.

(2) Solve the NS and continuity equations (1) and (2) as described in Section 2.5.2 while using LWS�s meth-

od of rescaling to generate the inlet conditions at each time step (see Lund et al. [9] for details). The
recycling y–z plane (see Code-A domain in Fig. 1) used for rescaling the velocity field is fixed at

xrec ¼ 8:25d0. At each time step the velocity field uiðxsave; y; zÞ on the y–z plane in the middle of the do-

main (xsave ¼ 5d0) is stored for use as instantaneous inlet condition for Code-B simulation.

The solution is advanced in time up to time t ¼ 300 ’ 5200m=u2s , and the statistics are computed every 10

time steps during the time interval 1506 t6 300. Fig. 7(a) and (b) shows the evolution in Code-A and Code-

B of the boundary layer thickness d, shape factor H , boundary layer displacement thickness d� and mo-

mentum thickness h versus Reh from Reh ¼ 800 to 1500. It is important to note that there are no differences

in the slopes of development of these four quantities in the overlap region Reh ¼ 1020 to 1200.
2.4. Inflow and initial conditions for the main simulation: Code-B

Code-B simulation is performed via the following steps:

(1) Copy uiðxsave; y; zÞ stored at t ¼ 0 in Code-A/Task-2 into uiðx ¼ 0; y; zÞ of Code-B (Fig. 1). Then, gener-

ate initial condition for Code-B by copying the values of the velocity of the inlet plane uiðx ¼ 0; y; zÞ at
t ¼ 0 to all other y–z planes of the computational domain (Code-B), plus a random fluctuation of max-

imum amplitude equal to 10% of uiðx ¼ 0; y; zÞ.
(2) Correct the initial velocity field uiðx; y; zÞ by Du0j ¼ �Dtðop=oxjÞ as described above in Section 2.3.1 to

insure that the continuity equation is satisfied throughout the domain.
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thickness h versus Reh. Code-A/Task 2 (dotted lines); Code-B (solid lines).

382 A. Ferrante, S.E. Elghobashi / Journal of Computational Physics 198 (2004) 372–387
(3) Solve the NS and continuity equations (1) and (2) as described in Section 2.5.2, while copying at each

time step, as inlet conditions, the velocity field uiðxsave; y; z; tÞ stored in Code-A/Task-2.

Code-B simulation is synchronized with Code-A/Task-2, thus as in Code-A/Task-2 the solution in Code-

B is advanced in time up to time t ¼ 300 ’ 5200m=u2s , and the statistics are computed every 10 time steps for

1506 t6 300.

Results of Code-B are presented in Section 3.
2.5. Numerical method

The details of the numerical method are given in the next subsections.

2.5.1. Computational domain and grid

The computational domains, sketched in Fig. 1, are parallelepipeds whose dimensions Lx, Ly and Lz, and

the corresponding numbers of grid points, Nx, Ny and Nz in the streamwise, spanwise and wall-normal
directions respectively are listed in Table 2. The computational mesh is equispaced in the streamwise and

spanwise directions, with grid spacing Dxþ ¼ 14 and Dyþ ¼ 7, whereas in the vertical direction, the mesh is

stretched gradually to have a fine grid in the wall region, and a coarser grid outside the boundary layer
Table 2

Dimensions of the computational domain, Lx, Ly and Lz, and number of grid points, Nx, Ny and Nz in the streamwise, spanwise and wall-

normal directions respectively

Code Lx Ly Lz Nx Ny Nz

A 10d0 5d0 3:6d0 256 256 96

B 20d0 5d0 3:6d0 512 256 96



A. Ferrante, S.E. Elghobashi / Journal of Computational Physics 198 (2004) 372–387 383
(z > d) where the mean flow is uniform. The stretched mesh has been created via mapping a uniform

computational grid f into its non-uniform counterpart z with a combination of hyperbolic tangent

functions [6]:

z ¼ Lz 1

�
� tanh cðLz � fÞ

tanh cLz

�
0 < z; f < Lz; ð26Þ

where c is a constant which determines the degree of grid compression near the wall boundary and Lz is the
height of the computational domain. The closest grid point to the wall is located at zþmin ¼ 0:58 and the

maximum grid spacing is Dzþmax ¼ 34 for the following values of the parameters: c ¼ 0:66, Lz ¼ 3:6d0 and

Nz ¼ 96. The spatial derivatives o=ox3 in Eqs. (4) and (5) can be written via Eq. (26) as

o

oz
¼ tanh cLz

cLz
cosh2 cðLz

�
� fÞ

�
o

of
: ð27Þ
2.5.2. Numerical discretization

The governing equations (Eqs. (4) and (5)) were discretized in space in an Eulerian framework on a

staggered mesh [5] using a second-order central-difference scheme, except for the mean advection terms

(Uref ouj=ox1), which were evaluated via a fifth-order upwind differencing scheme. Time integration was

performed via the second-order Adams–Bashforth scheme with a time step Dt ¼ 0:15m=u2s . Pressure was

treated implicitly and was obtained by solving the Poisson equation in finite-difference form [4] using a
cosine transform in the streamwise direction [16], a fast Fourier transform (FFT) in the spanwise direction,

and Gauss elimination in the wall-normal direction [11].
3. Results

Fig. 8 shows the spatial development in the streamwise direction in Code-B (Fig. 1) of the boundary

layer thickness d, the momentum thickness Reynolds number Reh, and the skin friction coefficient
Cf ¼ 2sw=qU 2

1. It is seen that d and Reh grow nearly linearly along x, whereas Cf decreases slightly due to

the increase of Reh along the plate from 1020 to 1480.

We now compare our DNS results obtained from Code-B with the experimental data of DeGraaff and

Eaton [2] for a SDTBL over a flat plate at Reh ¼ 1430. Figs. 9 and 10 display the comparison in wall units

for the mean streamwise velocity and three Reynolds stresses. The DNS profiles shown in Fig. 9 were

obtained by spatial averaging in the spanwise (y) direction at x ¼ 18:8d0 where Reh ¼ 1430 (Fig. 8), in

addition to time-averaging over a nondimensional time t ¼ 150 ’ 2600m=u2s . The mean velocity profile is in

excellent agreement with the experimental profile. Similar agreement is shown for the normal Reynolds
stresses hu021 i and hu023 i. The difference in the magnitude of the peak of turbulent shear stress, hu01u03i, is
probably due to experimental uncertainty. DeGraaff and Eaton [2] indicate a 10% error in the measured

value of hu01u03i. A similar discrepancy was found by [2] in comparing their results with the DNS results of

[13] (Reh ¼ 1410). Our computed skin friction coefficient (Cf ¼ 3:96� 10�3) at Reh ¼ 1430 is nearly iden-

tical to that measured (Cf ¼ 3:97� 10�3) by DeGraaff and Eaton [2].

We have also performed a grid refinement test, by doubling the number of grid points in the streamwise

direction (from Nx ¼ 512 to Nx ¼ 1024, keeping Lx ¼ 20d0) such that Dxþ ¼ Dyþ ¼ 7, and accordingly

halved the time step (from Dt ¼ 0:150m=u2s to Dt ¼ 0:075m=u2s) for the integration of Eqs. (4) and (5). Figs. 9
and 10 compare the results of the two grids used for Code-B and show that the finer mesh produces better

agreement with the experimental data, and indicate that the maximum differences are: 1:8% for hU1iþ, 4.7%
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for hu021 i, 5:7% for hu023 i and 3.1% for hu01u03i. However the total CPU time required for the run with the finer

mesh was 9500 h, i.e. more than three times that of the original mesh, and the memory doubled to 26

Gbytes on Cray-T3E with 256 processors.
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4. Closing remarks

We presented a method for generating inflow conditions for DNS of SDTBLs. The method is a mod-

ification of that of LWS [9]. The approach of Lund et al. is based on having an auxiliary simulation (Code-

A) in a three-dimensional domain similar to that of the main simulation (Code-B). The instantaneous

velocity field on a selected plane in Code-A is used as the instantaneous inflow conditions for Code-B. The

inflow conditions for Code-A are generated through a sequence of operations in which the velocity field at a
downstream station is rescaled and re-introduced at the inlet plane. Our modification focuses on generating

the inflow conditions for Code-A and comprises two main Tasks.

Task-1 requires the prescription of the spectrum, EðkÞ, of the TKE and the vertical, z or x3, profiles of the
four velocity correlations: hu021 i, hu022 i, hu023 i, and hu01u03i. The prescribed values of EðkÞ and hu0iu0ji are then

used in conjunction with the method of Le and Moin [6] to obtain the velocity field uiðx ¼ 0; y; zÞ at time

t ¼ 0. The objective of Task-1 is to create a realistic distribution of the velocity field throughout the

computational domain (Code-A) which is then used as an initial condition for Task-2.

Task-2 employs LWS�s rescaling method to adjust the profiles of hUii and hu0iu0ji so that they match the
growth rate of the SDTBL with the prescribed value of the momentum thickness Reynolds number, Reh, or
the boundary layer thickness Reynolds number, Red, at the inlet plane.

Task-1 is the main difference between our method and that of LWS [9]. The combination of a realistic

EðkÞ and a non-vanishing hu01u03i in our method insures that the velocity-derivative skewness (10) maintains

a value throughout the domain (Code-A) of about �0:5 as shown in Fig. 2. Our modification is essential for

sustaining the production rate of TKE near the wall throughout the domain. Our DNS results obtained

with the new modification are in excellent agreement with the experimental data of DeGraaff and Eaton [2]

at Reh ¼ 1430.
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Appendix A. Reference streamwise velocity profile: UrefðzÞ

The reference streamwise velocity, Uþ
ref , is prescribed according to the �law of the wall� [10]. Thus, in the

viscous sublayer,

Uþ
ref ¼ zþ; for zþ < 5: ðA:1Þ

Farther from the wall, the logarithmic law of the wall [15] can be written as

Uþ
ref ¼

1

j
ln zþ þ BþP

j
W

z
d

� 	
; for zþ > zþ1 and z=d6 1; ðA:2Þ

where j ¼ 0:41 is the von K�arm�an constant and B ¼ 5:2. The wake strength parameter, P, whose value is

flow dependent [1] is prescribed as P ¼ 0:5. The wake function W ðz=dÞ can be approximated as

W
z
d

� 	
¼ 2 sin2 p

2

z
d

� 	
: ðA:3Þ

In the buffer layer, the intermediate region between the viscous sublayer and the log-law region, a
logarithmic law is used,

Uþ
ref ¼ 5 ln zþ � 3:05; for zþ > 5 and zþ < zþ1 ; ðA:4Þ

where zþ1 represents a hypothetical coordinate which separates the buffer layer from the log-law region. We

adopted zþ1 ¼ 24 since, for Red ¼ 8000 used in our simulations, the specified Uþ
ref in the buffer layer from Eq.

(A.4) and in the log-law region from Eq. (A.2) intersect at zþ ¼ 24. Outside the boundary layer the free-

stream condition is used,

Uþ
ref ¼

U1

us
for z=d > 1: ðA:5Þ

A cubic spline interpolation over a few zþ has been applied between any two consecutive profiles de-

scribing Uþ
ref in order to avoid unphysical kinks in its derivatives dUref=dz and d2Uref=dz2. The friction

velocity us can be determined by solving the friction law (for fixed values of Red and U1),

U1

us
¼ 1

j
ln Red

us
U1

� �
þ Bþ 2P

j
; ðA:6Þ

which is obtained from Eq. (A.2), and the condition Uref ¼ U1 at z ¼ d. Once us and Uþ
ref are determined,

Uref can be calculated and substituted in Eq. (4). In our simulations for Red ¼ 8000 and U1 ¼ 1, the so-

lution of (A.6) gives us ¼ 0:0454.
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